Constant Velocity Model

Key ideas:

By the end of this unit, you should be able to do the following:

1. You should be able to determine the average velocity of an object in two ways:
determining the slope of an x vs. t graph.
using the equation
2. You should be able to determine the displacement of an object in two ways:
finding the area under a v vs. t graph.
using the equation
3. Given an x vs. t graph,
describe the motion of the object (starting position, direction of motion, velocity)
draw the corresponding v vs. t graph
determine the average velocity of the object (slope).
write the mathematical model which describes the motion.
4. Given a v vs. t graph,
draw the corresponding x vs. t graph
determine the displacement of the object (area between the line and the x-axis).
5. Solve complex problems with the constant velocity model (solve for unknown positions, times, and velocities)

Terms and Definitions:

Average Velocity $=$ Slope of x-t graph $=\frac{\text { Change in Position }}{\text { Change in Time }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{\Delta x}{\Delta t}$
$\Delta \mathbf{x}=$ change in position $=x_{f}-x_{i}=$ displacement $=$ area under v-t graph. Displacement is the straight-line distance between the starting point and the ending point. Displacement also reports the direction of motion.

Distance $=$ total distance traveled along a path to get from the starting position to the ending position.
Average Speed $=$ Distance $/$ Change in Time
Scalar = A Quantity that tells "how much" only; i.e. speed
Vector $=$ A quantity that tells how much and which direction; i.e. velocity
Qualitative = Conceptually correct, but not numerically precise
Quantitative = Numerically Accurate

